
LARGE CARDINALS IN GENERAL TOPOLOGY I

Miroslav HUŠEK
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Large cardinals

The existence of a large cardinal κ should not be inconsistent with ZFC.

If ZFC is consistent, then ZFC + ”the large cardinal κ does not exist”
is consistent.



Measurable cardinals
S.Banach, K.Kuratowski, S.Ulam (Lvov 1929-1930)

Stanislaw Marcin Ulam, Stefan Banach Kazimierz Kuratowski
1909-1984 1892–1945 1896–1980

Definition

For an infinite cardinal κ we say that a measure µ on A is κ-additive if
µ(∪λAα) =

∑
λ µ(Aα) whenever {Aα}λ is a disjoint collection of subsets

of A and λ < κ.

If κ = ω (or κ = ω1), we speak about finitely additive (or countably
additive) measure.

Definition (Measurable cardinals)

A cardinal number κ is said to be real-measurable if there is a κ-additive
measure on the set κ.
A cardinal number κ is said to be measurable if there is a κ-additive
two-valued measure on the set κ.

The class of measurable cardinals will be ordered: ω = m0 < m1 < ....
The first uncountable real-measurable cardinal is denoted as mR.
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All our measures are defined on all subsets of some set. We shall
assume that measures are non-trivial in the sense that the measure of the
whole set is not zero, while measures of points are zero.
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Theorem

Every real measurable cardinal is inaccessible.
Every measurable cardinal is strongly inaccessible.
Any real measurable cardinal is measurable provided it is bigger than 2ω.

Theorem (R.N.Solovay)

The consistencies of {ZFC + ∃m1}, {ZFC + ∃mR}, {ZFC + (∃mR ≤ 2ω)}
are equivalent.

For a cardinal κ, we denote by m(κ) the first measurable cardinal
bigger than κ or a symbol ∞ bigger than any cardinal if there is no
measurable cardinal bigger than κ.

Theorem

Every κ-additive measure is m(κ)-additive.

Corollary

The first uncountable measurable cardinal is the first uncountable cardinal
admitting a countably additive measure.
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Ultrafilters

Definition (κ-completeness of filters)

For an infinite cardinal κ, a filter F of subsets of A is said to be
κ-complete if

⋂
λAα ∈ F whenever {Aα}λ ⊂ F and λ < κ.

Instead of ω1-complete filters we speak about countably complete filters.

If µ is a two-valued κ-additive measure on a set A then
{P ⊂ A;µ(P ) = 1} is a free κ-complete ultrafilter on A.

Conversely, if F is a free κ-complete ultrafilter then µ with value 1 at
sets from F and zero otherwise is a two-valued κ-additive measure on A.

Theorem

A cardinal κ is measurable iff there exists a free κ-complete ultrafilter on
the set κ.
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Measurable cardinals and topology

In this part, we shall work in Hausdorff completely regular (i.e.,
Tikhonov) spaces only.



Measurable cardinals and topology

Trivially: A set X has cardinality less than m iff every maximal filter
on expX is fixed provided it is m-complete.

When X is a topological space, one can take some subclasses of expX
instead of expX, like the class of closed sets or of zero sets in X (i.e., sets
of a form f−1(0), f : X → R continuous).



Theorem (m = ω)

The following conditions for a topological space X are equivalent:

1 X is compact.

2 Every ultrafilter X on X converges (i.e.,
⋂
X A 6= ∅).

3 For every ultrafilter X on X the filter {F ∈ X ;F is closed } in
closed sets in X is fixed (has nonempty intersection).

4 Every maximal filter of closed sets in X is fixed (has nonempty
intersection).

5 For every ultrafilter X on X the filter {F ∈ X ;F is a zero set } in
zero sets in X is fixed (has nonempty intersection)

6 Every maximal filter of zero sets in X is fixed (has nonempty
intersection).
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Zero sets

For every ultrafilter X on X the filter {F ∈ X ;F is a zero set } in zero
sets in X is fixed (has nonempty intersection) provided it is κ-complete.

Every maximal filter of zero sets in X is fixed (has nonempty
intersection) provided it is κ-complete.



Zero sets

For every ultrafilter X on X the filter {F ∈ X ;F is a zero set } in zero
sets in X is fixed (has nonempty intersection) provided it is κ-complete.

Every maximal filter of zero sets in X is fixed (has nonempty
intersection) provided it is κ-complete.

Definition (κ-compact spaces, H.Herrlich)

A topological space X is said to be κ-compact if every maximal zero filter
that is κ-complete, has nonempty intersection.

ω1-compact space = realcompact space



Closed sets

For every ultrafilter X on X the filter {F ∈ X ;F is closed } in closed sets
in X is fixed (has nonempty intersection) provided it is κ-complete.

Every maximal filter of closed sets in X is fixed (has nonempty
intersection) provided it is κ-complete.



Closed sets

For every ultrafilter X on X the filter {F ∈ X ;F is closed } in closed sets
in X is fixed (has nonempty intersection) provided it is κ-complete.

Every maximal filter of closed sets in X is fixed (has nonempty
intersection) provided it is κ-complete.

Definition (κ-ultracompact spaces, J.van der Slot)

A topological space X is said to be κ-ultracompact if every ultrafilter
with κ-complete property for its closed sets converges.



Definition

A productive and closed-hereditary (i.e., epireflective) class C of spaces is
said to be simple if there is Z ∈ C such that every X ∈ C can be
embedded onto a closed subspace a power of Z. One says that C is
generated by Z and the spaces from C are then called Z-compact spaces.

By Cκ we denote the class of κ-compact spaces.
By Uκ we denote the class of κ-ultracompact spaces.

The classes Cω,Uω are simple, they coincide with the class of compact
spaces and are generated by [0, 1].

The class Cω1 is the simple class of realcompact spaces generated by R.

1 Are the classes Cκ, κ ≥ ω2 simple?

2 Are the classes Uκ, κ ≥ ω1 simple?

3 What is a relation between Cκ and Uκ?
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Theorem (MH)

The classes Cκ are simple. For any cardinal κ, the class Cκ+ is generated
by Pκ = [0, 1]κ \ {1}. For limit κ the class Cκ is generated by

∏
κ Pλ.

Theorem (van der Slot, Z.Froĺık)

The class of perfect images of spaces from Cκ coincides with the class Uκ.

Theorem (MH)

If C is epireflective, closed under perfect images and contains a discrete
space of cardinality µ then C is not a part of E-compact spaces for any
space E of cardinality less than m(µ).

Corollary

1. The classes Uκ, ω < κ < m1, are not generated by a space of cardinality
< m1.
2. The classes Cκ, ω < κ < m1, and Uλ are all different.
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PROBLEMS

1. Is Cm = Um for measurable cardinals m?

2. Are the classes Uκ simple?

Similar situation

P.Nyikos: The class of N-compact spaces is a proper subclass of the class
of all zerodimensional realcompact spaces. It does not contain the Prabir
Roy’s metric space ∆ with ind ∆ = 0, Ind ∆ = 1.

Problem: Is the class of all zerodimensional realcompact spaces simple?

A.Mysior

The class of all zerodimensional realcompact spaces is not generated by
any space of Ulam non-measurable cardinality.

Problem

Is the class of all zerodimensional realcompact spaces generated by a
space of cardinality bigger than m1?
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Dieudonné complete spaces

Definition

A space X is said to be Dieudonné complete if there is a complete
uniformity inducing its topology (i.e., the fine uniformity of X is
complete).

Theorem (MH)

If X is a Dieudonné complete space and m a measurable cardinal then the
following properties are equivalent:

1 X is κ-compact and m(κ) = m, κ not measurable.

2 X is λ-ultracompact and m(λ) = m, λ not measurable.

3 X contains no closed discrete subspace of cardinality m.

4 X is H(µ)-compact for any µ with m(µ) = m.

Corollary

The class of Dieudonné spaces is simple iff the class of measurable
cardinals is a set.
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Definition

A space X is said to be Dieudonné complete if there is a complete
uniformity inducing its topology (i.e., the fine uniformity of X is
complete).

Every paracompact or realcompact space is Dieudonné complete.
For an infinite cardinal κ we denote by H(κ) the metrizable hedgehog

with κ many spines.
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Sequential continuity

Theorem (N.Varopoulos)

Every sequentially continuous homomorphism between compact groups of
cardinalities less than m1 is continuous.

Theorem (CH)

Every sequentially continuous mapping between compact groups of
cardinalities less than m1 is continuous.
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Factorizations of maps on products

Let X ⊂
∏
I Xi and f : X → Y . We say that f depends on J ⊂ I (or

on |J | coordinates, or that f factorizes via prJ(X)) if there exists a map
fJ : prJ(X)→ Y such that f = fJ ◦ prJ , i.e., if f(x) = f(y) provided
x, y ∈ X,prJ(x) = prJ(y).

X
∏
I Xi

prJ(X)
∏
J Xi

Y

f

prJ

fJ
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Σ-products

Σ-product

Let p ∈
∏
I Xi. The subset {x ∈

∏
I Xi; |i ∈ I; pria 6= pri(p)| ≤ ω} is

called a Σ-product of {Xi}I with the basic point p.
If instead of ≤ ω in the previous definition we use < ω we get σ-products.

Theorem (N.Noble)

If all Xi, i ∈ I, are first countable then every Σ-product of {Xi}I is a
Fréchet space.

Corollary

Every sequentially continuous mapping on a product of first countable
spaces is continuous on every Σ-product of {Xi}I .
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Productivity number

Question

When a sequentially continuous map defined on a product of spaces is
continuous?

Spaces having the property that every sequentially continuous map
defined on them and ranging in a given class of spaces is continuous, form
a coreflective class, i.e., the class is closed under taking quotients and
inductive limits (sums). So, there is a more general question how big are
the so called productivity numbers of coreflective classes:

Definition

Productivity number of a coreflective class C is the smallest cardinal κ
such that a product

∏
κXα, Xα ∈ C, does not belong to C.



Productivity number

Question

When a sequentially continuous map defined on a product of spaces is
continuous?

Spaces having the property that every sequentially continuous map
defined on them and ranging in a given class of spaces is continuous, form
a coreflective class, i.e., the class is closed under taking quotients and
inductive limits (sums). So, there is a more general question how big are
the so called productivity numbers of coreflective classes:

Definition

Productivity number of a coreflective class C is the smallest cardinal κ
such that a product

∏
κXα, Xα ∈ C, does not belong to C.



Productivity number

Question

When a sequentially continuous map defined on a product of spaces is
continuous?

Spaces having the property that every sequentially continuous map
defined on them and ranging in a given class of spaces is continuous, form
a coreflective class, i.e., the class is closed under taking quotients and
inductive limits (sums). So, there is a more general question how big are
the so called productivity numbers of coreflective classes:

Definition

Productivity number of a coreflective class C is the smallest cardinal κ
such that a product

∏
κXα, Xα ∈ C, does not belong to C.



Theorem (I.Glicksberg)

For infinite spaces X,Y the equality β(X × Y ) = β(X)× β(Y ) holds iff
X × Y is pseudocompact.

Theorem

Let X,Y have Ulam measurable cardinalities. If
υ(X × Y ) = υ(X)× υ(Y ) then X × Y is pseudo-m1-compact.
The converse is not true.

Theorem

The property υ(X × Y ) = υ(X)× υ(Y ) for X × Y is not topological for
infinite spaces X,Y .

Theorem

Let K be a finitely productive class of spaces containing all compact
spaces and a pair P,Q with υ(P ×Q) 6= υ(P )× υ(Q). Then there are no
topological properties A,B such that for X,Y ∈ K one has
υ(X × Y ) = υ(X)× υ(Y ) iff X,Y ∈ A, X × Y ∈ B.
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